高中数学说课稿

时间:2024-07-13 20:13:51
高中数学说课稿

高中数学说课稿

在教学工作者实际的教学活动中,通常需要准备好一份说课稿,借助说课稿可以让教学工作更科学化。写说课稿需要注意哪些格式呢?以下是小编为大家收集的高中数学说课稿,希望对大家有所帮助。

高中数学说课稿1

一.说教材

1.1 教材结构与内容简析

本节课为《江苏省中等职业学校试用教材数学(第二册)》5.6函数图象的定位作图法的第一课时,主要内容为基本函数 与一般函数 间的图象平移变换规律。

函数图象的平移,既是前阶段函数性质及具体函数研究的延续和深化,也是后阶段定位作图法以至解析几何中移轴化简的基础和渗透,在教材中起着重要的承上启下作用。更为重要的是,这段内容还蕴涵着重要的数学思想方法,如化归思想、映射与对应思想、换元方法等。

1.2 教学目标

1.2.1知识目标

⑴、给定平移前后函数解析式,能熟练叙述相应的平移变换,正确掌握平移方向与 、 符号的关系。

⑵、能较熟练地化简较复杂的函数解析式,找出对应的基本函数模型(如一次函数,反比例函数、指数函数等)。

⑶、初步学会应用平移变换规律研究较复杂的函数的具体性质(如值域、单调性等)。

1.2.2能力目标

⑴、在数学实验平台上,能自主探究,改变相应参数和函数解析式,观察相应图象变化,经历命题探索发现的过程,提高观察、归纳、概括能力。

⑵、结合学习中发现的问题,学会借助于数学软件等工具研究、探索和解决问题,学会数学

地解决问题。

⑶、渗透数学思想与方法(如化归、映射的思想,换元的方法)的学习,发展学生的非逻辑思维能力(合情推理、直觉等)。

1.2.3情感目标

培养学生积极参与、合作交流的主体意识,在知识的探索和发现的过程中,使学生感受数学学习的意义,改善学生的数学学习信念(态度、兴趣等)。

1.3 教材重点和难点处理思路

重点:函数图象的平移变换规律及应用

难点:经历数学实验方法探索平移对函数解析式的影响及如何利用平移变换规律化简函数解析式、研究复杂函数

教材在这段内容的处理上,注重直观性背景,注重学生丰富感性知识的获得,淡化形式化的逻辑推导和形式化的结果即平移公式。实际教学中,我们发现如果学生不经受足够的亲身体验而简单的记住结论的话,往往很难在形式化的解析式与具体的图象平移之间建立联系,并且移轴与移图象之间也容易搞混,说明这段内容不能采取简单的“告诉”方式,须让学生自主发现命题、发现规律,让他们“知其然,更要知其所以然。”

为了突出重点、突破难点,在教学中采取了以下策略:

⑴、从学生已有知识出发,精心设计一些适合学生学力的数学实验平台,分层次逐步引导学生观察图象的平移方向与函数解析式中 、 符号的关系,抽象、归纳出平移变换规律。 ⑵、创设情境,引发学生认知冲突,激发学生求知欲,能借助于数学软件多角度积极探求错误原因,使学生认识到形如 的函数须提取 前的系数化为 的形式,从而真正认识解析式形式化的特点。

⑶、数学实验采取小组合作研究共同完成简单实验报告的形式,通过学生的自主探究、合作交流,从而实现对平移变换规律知识的建构。

二.说教法

针对职高一年级学生的认知特点和心理特征,在遵循启发式教学原则的基础上,本节课我主要采取以实验发现法为主,以讨论法、练习法为辅的教学方法,引导学生通过实验手段,从直观、想象到发现、猜想,亲历数学知识建构过程,体验数学发现的喜悦。

本节课的设计一方面重视学生数学学习过程是活动的过程,因此不是按照已形式化了的现成的数学规则去操作数学,而是采取数学实验的方式,使学生有机会经受足够的亲身体验,亲历知识的自主建构过程;使学生学会从具体情境中提取适当的概念,从观察到的实例中进行概括,进行合理的数学猜想与数学验证,并作更高层次的数学概括与抽象;从而学会数学地思考。

另一方面,注重创设机会使学生有机会看到数学的全貌,体会数学的全过程。整堂课的设计围绕研究较复杂函数的性质展开,以问题“函数 的性质如何”为主线,既让学生清楚研究函数图象平移的必要性,明确学习目标,又让学生初步学会如何应用规律解决问题,体会知识的价值,增强求知欲。

总之,本节课采用数学实验发现教学,学生采取小组合作的形式自主探究;利用实物投影进行集体交流,及时反馈相关信息。

三.说学法

“学之道在于悟,教之道在于度。”学生是学习的主体,教师在教学过程中须将学习的主动权交给学生。

美国某大学有一句名言:“让我听见的,我会忘记;让我看见的,我就领会了;让我做过的,我就理解了。”通过学生的自主实验,在探索新知的经历和获得新知的体验的基础之上,真正正确掌握平移方向。

教师的“教”不仅要让学生“学会知识”,更主要的是要让学生“会学知识”。正如荷兰数学教育家弗赖登塔尔所指出,“数学知识既不是教出来的,也不是学出来的,而是研究出来的。”本节课的教学中创设利于学生发现数学的实验情境,让学生自主地“做数学”,将传统意义下的“学习”数学改变为“研究”数学。从而,使传授知识与培养能力融为一体,在转变学习方式的同时学会数学地思考。

四.说程序

4.1创设情境,引入课题

在简要回顾前面研究的具体函数(指数函数、幂函数、三角函数等)性质后,提出问题“如何研究 的性质?”

引导学生讨论后,总结出两种思路,即:思路1、通过描点法作出函数的图象,借助于图象研究相关性质;思路2、将 的性质问题化归为 的问题,借助于基本函数 的性质解决新问题。

从而自然地引出课题,关键是找出 与 的关系,尤其是图象间的联系。更一般地,就是基本函数 与 间的联系。

4.2数学实验,自主探索

这一环节主要分两阶段。

1、尝试初探

引例、函数 与 图象间的关系

这一阶段主要由教师讲解,学生观察发现,意在突出两函数图象形状相同、位置不同,后者可以由前者平移得到。

讲解时,利用几何画板的度量功能,给出两个对应点的坐标,易于学生发现点的坐标关系,并给出相应的辅助线,一方面便于学生发现规律,另一方面也是为后面定位作图法的学习作好铺垫。

2、实验发现

本阶段由学生以小组合作探索的形式完成,通过填写实验报告的形式完成探索规律的任务。 实验1、试改变实验平台1中的参数 、 ,观察由 的图象到 的变换现象,依照给出的样例填写下表,并总结其中的平移变换规律。

函数 解析式平移变换规律12向左平移2个单位,向上平移1个单位 实验结论

高中数学说课稿2

一、说 ……此处隐藏31432个字……析四大方面来阐述我对这节课的分析和设计:

一、教材分析

1.教材所处的地位和作用

本章我们所要学习的主要内容就是统计,在前面的章节中我们已经对统计的相关知识作了大致的了解。本节课我们要继续探讨的是变量之间的相关关系,它为接下来要学习的两个变量的线性相关打下基础。这是一个与现实实际生活联系很紧密的知识,在教师的引导下,可使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.

2.教学的重点和难点

重点:①通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;

②利用散点图直观认识两个变量之间的线性关系;

难点:①变量之间相关关系的理解;②作散点图和理解两个变量的正相关和负相关

二、教学目标分析

1.知识与技能目标

通过收集现实问题中两个有关联变量的数据认识变量间的相关关系

2、过程与方法目标:

明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.

3、情感态度与价值观目标:

通过对事物之间相关关系的了解,让学生们认识到现实中任何事物都是相互联系的辩证法思想。

三、教学方法与手段分析

1.教学方法:结合本节课的教学内容和学生的认知水平,在教法上,我采用“问答探究”式的教学方法,层层深入。充分发挥教师的主导作用,让学生真正成为教学活动的主体。

2。教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性。

四、教学过程分析

㈠问题引出:

请同学们如实填写下表(在空格中打“√”)

然后回答如下问题:①“你的数学成绩对你的物理成绩有无影响?”②“如果你的数学成绩好,那么你的物理成绩也不会太差,如果你的数学成绩差,那么你的物理成绩也不会太好。”对你来说,是这样吗?同意这种说法的同学请举手。

根据同学们回答的结果,让学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系。(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对。)教师总结如下:

物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法。数学成绩的高低对物理成绩的高低是有一定影响的。但决非唯一因素,还

有其它因素,如图所示(幻灯片给出):

因此,不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少。但这两个变量是有一定关系的,它们之间是一种不确定性的关系。如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义。

「设计意图」通过对身边事例的分析,引出我们今天将要学习的主要内容,由此可以激起学

生们的学习兴趣,为接下来的学习打下良好的基础。

㈡探究新知

⒈概念形成

教师提问:“像刚才这种情况在现实生活中是否还有?”学生们思考之后,请几位同学就提出的问题作出回答。老师就举出的例子,引导学生作出分析,然后由老师总结得出相关关系的概念。[两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。相关关系是一种非确定性关系。]

「设计意图」从现实生活入手,抓住学生们的注意力,引导学生分析得出概念,让学生真正参与到概念的形成过程中来。

⒉探究线性相关关系和其他相关关系

「课件展示」

例1在一次对人体脂肪和年龄关系的研究中,研究人员获得了一组样本数据:

问题:针对于上述数据所提供的信息,你认为人体的脂肪含量与年龄之间有怎样的关系?

[教师特别向学生强调在研究两个变量之间是否存在某种关系时,必须从散点图入手(向学生介绍什么是散点图)。并且引导学生从散点图上可以得出如下规律:(幻灯片给出)

①如果所有的样本点都落在某一函数曲线上,那么变量之间具有函数关系(确定性关系);②如果所有的样本点都落在某一函数曲线的附近,那么变量之间具有相关关系(不确定性关系);③如果所有的样本点都落在某一直线附近,那么变量之间具有线性相关关系(不确定性关系)。

「设计意图」通过对这个典型事例的分析,向学生们介绍什么是散点图,并总结出如何从散点图上判断变量之间关系的规律。

下面我们用TI图形计算器作出这两个变量的散点图。

学生实验:先把数据中成对出现的两个数分别作为横坐标、纵坐标,把数据输入到表格当中(第一列横坐标、第二列纵坐标);然后,用TI图形计算器作散点图:

[引导学生观察作出的散点图,体会现实生活中两个变量之间的关系存在着不确定性。散点图中的散点并不在一条直线上,只是分布在一条直线的周围,即为线性相关关系。]

「设计意图」通过实验让学生们感受散点图的主要形成过程,并由此引出线性相关关系。为后面回归直线和回归直线方程的学习做好铺垫。

「课件展示」四组数据,请学生作出散点图,并观察每组数据的特点。

根据四组数据,学生作出四个散点图。

通过学生讨论、交流、用TI图形计算器展示、对比自己作出的散点图,我们引出线性相关关系,正负相关关系的概念。

「设计意图」及时巩固知识,学生通过亲自动手作散点图,并交流讨论,进一步加深对散点图的理解,并由此引出正负相关关系的概念,突破难点。

㈢例题讲解,深化认识

「课件展示」

例2一般说来,一个人的身高越高,他的人就越大,相应地,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系。为了对这个问题进行调查,我们收集了北京市某中学20xx年高三年级96名学生的身高与右手一拃长的数据如下表。

(1)根据上表中的数据,制成散点图。你能从散点图中发现身高与右手一拃长之间的近似关系吗?

(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系。

(3)如果一个学生的身高是188cm,你能估计他的一拃大概有多长吗?

「设计意图」这个例子很容易激起学生们的学习兴趣,由此可达到更好的教学效果。通过对这道题的解答,使对前面知识的认识更加牢固。

㈣反思小结、培养能力

⑴变量间相关关系、线性关系和正负相关关系

⑵如何做散点图

「设计意图」小节是一堂课的概括和总结,有利于优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,也更进一步培养学生的归纳概括能力

㈤课后作业,自主学习

习题2.31、2

[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。

《高中数学说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式